Abstract

Motivated by theoretical predictions that the first stars were predominantly very massive, we investigate the physics of the transition from an early epoch dominated by massive Pop III stars to a later epoch dominated by familiar low-mass Pop II/I stars by means of a numerically generated catalogue of dark matter haloes coupled with a self-consistent treatment of chemical and radiative feedback. Depending on the strength of the chemical feedback, Pop III stars can contribute a substantial fraction (several per cent) of the cosmic star formation activity even at moderate redshifts, z ≈ 5. We find that the three z ≈ 10 sources tentatively detected in Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Ultra Deep Fields (UDFs) should be powered by Pop III stars, if these are massive; however, this scenario fails to reproduce the derived Wilkinson Microwave Anisotropy Probe (WMAP) electron scattering optical depth. Instead, both the UDFs and WMAP constraints can be fulfilled if stars at any time form with a more standard, slightly top-heavy, Larson initial mass function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.