Abstract

Constraints are presented on the total width of the recently discovered Higgs boson, ΓH, using its relative on-shell and off-shell production and decay rates to a pair of Z bosons, where one Z boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The analysis is based on the data collected by the CMS experiment at the LHC in 2011 and 2012, corresponding to integrated luminosities of 5.1 fb−1 at a center-of-mass energy s=7 TeV and 19.7 fb−1 at s=8 TeV. A simultaneous maximum likelihood fit to the measured kinematic distributions near the resonance peak and above the Z-boson pair production threshold leads to an upper limit on the Higgs boson width of ΓH<22 MeV at a 95% confidence level, which is 5.4 times the expected value in the standard model at the measured mass of mH=125.6 GeV.

Highlights

  • Constraints are presented on the total width of the recently discovered Higgs boson, ΓH, using its relative on-shell and off-shell production and decay rates to a pair of Z bosons, where one Z boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair

  • A simultaneous maximum likelihood fit to the measured kinematic distributions near the resonance peak and above the Z-boson pair production threshold leads to an upper limit on the Higgs boson width of ΓH < 22 MeV at a 95% confidence level, which is 5.4 times the expected value in the standard model at the measured mass of mH = 125.6 GeV

  • The measurements were found to be consistent with a single narrow resonance, and an upper limit of 3.4 GeV at a 95% confidence level (CL) on its decay width (ΓH) was reported by the CMS experiment in the four-lepton decay channel [7]

Read more

Summary

Introduction

Constraints are presented on the total width of the recently discovered Higgs boson, ΓH, using its relative on-shell and off-shell production and decay rates to a pair of Z bosons, where one Z boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. In order to parameterize and validate the distributions of all the components for both gluon fusion and VBF processes, specific simulated samples are produced that describe only the signal or the continuum background, as well as several scenarios with scaled couplings and width.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call