Abstract

Geological and geophysical models are essential for developing reliable mine designs and mineral processing flowsheets. For mineral resource assessment, mine planning, and mineral processing, a deeper understanding of the orebody's features, geology, mineralogy, and variability is required. We investigated the gold-bearing Black Reef Formation in the West Rand and Carletonville goldfields of South Africa using approaches that are components of a transitional framework toward fully digitized mining: (1) high-resolution 3D reflection seismic data to model the orebody; (2) petrography to characterize Au and associated ore constituents (e.g., pyrite); and (3) 3D micro-X-ray computed tomography (µCT) and machine learning to determine mineral association and composition. Reflection seismic reveals that the Black Reef Formation is a planar horizon that dips < 10° and has a well-preserved and uneven paleotopography. Several large-scale faults and dikes (most dipping between 65° and 90°) crosscut the Black Reef Formation. Petrography reveals that gold is commonly associated with pyrite, implying that µCT can be used to assess gold grades using pyrite as a proxy. Moreover, we demonstrate that machine learning can be used to discriminate between pyrite and gold based on physical characteristics. The approaches in this study are intended to supplement rather than replace traditional methodologies. In this study, we demonstrated that they permit novel integration of micro-scale observations into macro-scale modeling, thus permitting better orebody assessment for exploration, resource estimation, mining, and metallurgical purposes. We envision that such integrated approaches will become a key component of future geometallurgical frameworks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.