Abstract
The term glauconite covers a series of iron-rich minerals that form in the upper layer of sediments of the sea bottom in locations where sediment input is low. Because of its potassium content and the process of its formation, it is one of few minerals that can be used in both sequence stratigraphy and in the determination of sedimentation age. Although aluminum-rich glauconite has been identified in several locations, the way it forms remains relatively unknown. A study of the ferrian illite from the Cambrian Anse Maranda Formation shows that, according to the present models for the formation of glauconite and diagenesis, the Al-for- Fe substitution responsible for the genesis of Al-rich glauconite occurs during early burial. In order to maintain charge balance while replacing Fe2+ and Mg2+ by Al3+ at the octahedral site, there is an expulsion of K, as high as 31.6% of the measured K2O. This loss is important when evaluating the time needed to form glauconite and interpreting the occurrence of Fe-rich illite; it must be accounted for when using the K–Ar system, for either dating or in diagenetic studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.