Abstract

ABSTRACT The finite time, τdep, over which positrons from β+ decays of 56Co deposit energy in type Ia supernovae ejecta lead, in case the positrons are trapped, to a slower decay of the bolometric luminosity compared to an exponential decline. Significant light-curve flattening is obtained when the ejecta density drops below the value for which τdep equals the 56Co lifetime. We provide a simple method to accurately describe this ‘delayed deposition’ effect, which is straightforward to use for analysis of observed light curves. We find that the ejecta heating is dominated by delayed deposition typically from 600 to 1200 d, and only later by longer lived isotopes 57Co and 55Fe decay (assuming solar abundance). For the relatively narrow 56Ni velocity distributions of commonly studied explosion models, the modification of the light curve depends mainly on the 56Ni mass-weighted average density, 〈ρ〉t3. Accurate late-time bolometric light curves, which may be obtained with JWST far-infrared (far-IR) measurements, will thus enable to discriminate between explosion models by determining 〈ρ〉t3 (and the 57Co and 55Fe abundances). The flattening of light curves inferred from recent observations, which is uncertain due to the lack of far-IR data, is readily explained by delayed deposition in models with $\langle \rho \rangle t^{3} \approx 0.2\, \mathrm{M}_{\odot }\, (10^{4}\, \textrm{km}\, \textrm{s}^{-1})^{-3}$, and does not imply supersolar 57Co and 55Fe abundances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.