Abstract
Abstract. Subpolar regions are key areas for studying natural climate variability due to their high sensitivity to rapid environmental changes, particularly through sea surface temperature (SST) variations. Here, we have tested three independent organic temperature proxies (UK'37; TEX86; and the long-chain diol index, LDI) regarding their potential applicability for SST reconstruction in the subpolar region around Iceland. UK'37, TEX86 and TEXL86 temperature estimates from suspended particulate matter showed a substantial discrepancy with instrumental data, while long-chain alkyl diols were below the detection limit at most of the stations. In the northern Iceland Basin, sedimenting particles revealed a seasonality in lipid fluxes, i.e., high fluxes of alkenones and glycerol dialkyl glycerol tetraethers (GDGTs) were measured during late spring and during summer and high fluxes of long-chain alkyl diols during late summer. The flux-weighted average temperature estimates had a significant negative (ca. 2.3 °C for UK'37) and positive (up to 5 °C for TEX86) offset with satellite-derived SSTs and temperature estimates derived from the underlying surface sediment. UK'37 temperature estimates from surface sediments around Iceland correlate well with summer mean sea surface temperatures, while TEX86-derived temperatures correspond with both annual and winter mean 0–200 m temperatures, suggesting a subsurface temperature signal. Anomalous LDI-SST values in surface sediments and low mass flux of 1,13- and 1,15-diols compared to 1,14-diols suggest that Proboscia diatoms are the major sources of long-chain alkyl diols in this area rather than eustigmatophyte algae, and therefore the LDI cannot be applied in this region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.