Abstract

Seismic anisotropy is an intrinsic elastic property. Appropriate accounting of anisotropy is critical for correct and accurate positioning seismic events in reverse time migration. Although the full elastic wave equation may serve as the ultimate solution for modeling and imaging, pseudoelastic and pseudoacoustic wave equations are more preferable due to their computation efficiency and simplicity in practice. The anisotropic parameters and their relations are not arbitrary because they are constrained by the energy principle. Based on the investigation of the stability condition of the pseudoelastic wave equations, we have developed a set of explicit formulations for determining the S-wave velocity from given Thomsen’s parameters [Formula: see text] and [Formula: see text] for vertical transverse isotropy and tilted transverse isotropy media. The estimated S-wave velocity ensures that the wave equations are stable and well-posed in the cases of [Formula: see text] and [Formula: see text]. In the case of [Formula: see text], a common situation in carbonate, a positive value of S-wave velocity is needed to avoid the wavefield instability. Comparing the stability constraints of the pseudoelastic- with the full-elastic wave equation, we conclude that the feasible range of [Formula: see text] and [Formula: see text] was slightly larger for the pseudoelastic assumption. The success of achieving high-accuracy images and high-quality angle gathers using the proposed constraints is demonstrated in a synthetic example and a field example from Saudi Arabia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.