Abstract

We examine 141 N-body simulations of terrestrial planet late-stage accretion that use the Grand Tack scenario, coupling the collisional results with a hafnium-tungsten (Hf-W) isotopic evolution model. Accretion in the Grand Tack scenario results in faster planet formation than classical accretion models because of higher planetesimal surface density induced by a migrating Jupiter. Planetary embryos that grow rapidly experience radiogenic ingrowth of mantle 182W that is inconsistent with the measured terrestrial composition, unless much of the tungsten is removed by an impactor core that mixes thoroughly with the target mantle. For physically Earth-like surviving planets, we find that the fraction of equilibrating impactor core kcore≥ 0.6 is required to produce results agreeing with observed terrestrial tungsten anomalies (assuming equilibration with relatively large volumes of target mantle material; smaller equilibrating mantle volumes would require even larger kcore). This requirement of substantial core re-equilibration may be difficult to reconcile with fluid dynamical predictions and hydrocode simulations of mixing during large impacts, and hence this result does not favor the rapid planet building that results from Grand Tack accretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.