Abstract

We show that comparisons of HeII Lyman-alpha forest lines of sight to nearby quasar populations can strongly constrain the lifetimes and emission geometry of quasars. By comparing the HeII and HI Lyman-alpha forests along a particular line of sight, one can trace fluctuations in the hardness of the radiation field (which are driven by fluctuations in the HeII ionization rate). Because this high-energy background is highly variable - thanks to the rarity of the bright quasars that dominate it and the relatively short attenuation lengths of these photons - it is straightforward to associate features in the radiation field with their source quasars. Here we quantify how finite lifetimes and beamed emission geometries affect these expectations. Finite lifetimes induce a time delay that displaces the observed radiation peak relative to the quasar. For beamed emission, geometry dictates that sources invisible to the observer can still create a peak in the radiation field. We show that both these models produce substantial populations of "bare" peaks (without an associated quasar) for reasonable parameter values (lifetimes ~10^6-10^8 yr and beaming angles <90 degrees). A comparison to existing quasar surveys along two HeII Lyman-alpha forest lines of sight rules out isotropic emission and infinite lifetime at high confidence; they can be accommodated either by moderate beaming or lifetimes ~10^7-10^8 yr. We also show that the distribution of radial displacements between peaks and their quasars can unambiguously distinguish these two models, although larger statistical samples are needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.