Abstract
The recently reported observation of VFTS 243 is the first example of a massive black-hole binary system with negligible binary interaction following black-hole formation. The black-hole mass (≈10M_{⊙}) and near-circular orbit (e≈0.02) of VFTS 243 suggest that the progenitor star experienced complete collapse, with energy-momentum being lost predominantly through neutrinos. VFTS 243 enables us to constrain the natal kick and neutrino-emission asymmetry during black-hole formation. At 68% confidence level, the natal kick velocity (mass decrement) is ≲10 km/s (≲1.0M_{⊙}), with a full probability distribution that peaks when ≈0.3M_{⊙} were ejected, presumably in neutrinos, and the black hole experienced a natal kick of 4 km/s. The neutrino-emission asymmetry is ≲4%, with best fit values of ∼0-0.2%. Such a small neutrino natal kick accompanying black-hole formation is in agreement with theoretical predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.