Abstract
High-energy neutrino emission has been predicted for several short-lived astrophysical transients including gamma-ray bursts (GRBs), core-collapse supernovae with choked jets, and neutron star mergers. IceCube's optical and x-ray follow-up program searches for such transient sources by looking for two or more muon neutrino candidates in directional coincidence and arriving within 100s. The measured rate of neutrino alerts is consistent with the expected rate of chance coincidences of atmospheric background events and no likely electromagnetic counterparts have been identified in Swift follow-up observations. Here, we calculate generic bounds on the neutrino flux of short-lived transient sources. Assuming an E^{-2.5} neutrino spectrum, we find that the neutrino flux of rare sources, like long gamma-ray bursts, is constrained to <5% of the detected astrophysical flux and the energy released in neutrinos (100GeV to 10PeV) by a median bright GRB-like source is <10^{52.5} erg. For a harder E^{-2.13} neutrino spectrum up to 30% of the flux could be produced by GRBs and the allowed median source energy is <10^{52} erg. A hypothetical population of transient sources has to be more common than 10^{-5} Mpc^{-3} yr^{-1} (5×10^{-8} Mpc^{-3} yr^{-1} for the E^{-2.13} spectrum) to account for the complete astrophysical neutrino flux.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.