Abstract
The presence of massive particles with spin during inflation induces distinct signatures on correlation functions of primordial curvature fluctuations. In particular, the bispectrum of primordial perturbations obtains an angular dependence determined by the spin of the particle, which can be used to set constraints on the presence of such particles. If these particles are long-lived on super-Hubble scales, as is the case, e.g., for partially massless particles, their imprint on correlation functions of curvature perturbations would be unsuppressed. In this paper, we make a forecast for how well such angular dependence can be constrained by the upcoming EUCLID spectroscopic survey via the measurement of the galaxy bispectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.