Abstract
The Cryogenic Dark Matter Search low ionization threshold experiment (CDMSlite) achieved efficient detection of very small recoil energies in its germanium target, resulting in sensitivity to lightly ionizing particles (LIPs) in a previously unexplored region of charge, mass, and velocity parameter space. We report first direct-detection limits calculated using the optimum interval method on the vertical intensity of cosmogenically produced LIPs with an electric charge smaller than e/(3×10^{5}), as well as the strongest limits for charge ≤e/160, with a minimum vertical intensity of 1.36×10^{-7} cm^{-2} s^{-1} sr^{-1} at charge e/160. These results apply over a wide range of LIP masses (5 MeV/c^{2} to 100 TeV/c^{2}) and cover a wide range of βγ values (0.1-10^{6}), thus excluding nonrelativistic LIPs with βγ as small as 0.1 for the first time.
Highlights
We report first direct-detection limits calculated using the optimum interval method on the vertical intensity of cosmogenically produced lightly ionizing particles (LIPs) with an electric charge smaller than e=ð3 × 105), as well as the strongest limits for charge ≤ e=160, with a minimum vertical intensity of 1.36 × 10−7 cm−2 s−1 sr−1 at charge e=160
Intensity limit calculation.—The upper limit at 90% confidence level on the LIP vertical intensity, I9v0ðf; βγÞ, for an isotropic incident angular distribution is given by εfvðf; βγÞ
Summary.—Utilizing a SuperCDMS detector operated in CDMSlite mode, this work presents the first directdetection limits on the vertical intensity of cosmogenic LIPs with charge less than e=ð3 × 105Þ for values of incident βγ ranging from 0.1 to 106
Summary
I. Alkhatib,1 D. W. P. Amaral,2 T. Aralis,3 T. Aramaki,4 I. J. Arnquist,5 I. Ataee Langroudy,6 E. Azadbakht,6 S. Banik ,7,* D. Barker,8 C. Bathurst,9 D. A. Bauer,10 L. V. S. Bezerra,11,12 R. Bhattacharyya,6 M. A. Bowles,13 P. L. Brink,4 R. Bunker,5 B. Cabrera,14 R. Calkins,15 R. A. Cameron,4 C. Cartaro,4 D. G. Cerdeño,2,16 Y.-Y. Chang,3 M. Chaudhuri,7 R. Chen,17 N. Chott,13 J. Cooley,15 H. Coombes,9 J. Corbett,18 P. Cushman,8 F. De Brienne,19 M. L. di Vacri,5 M. D. Diamond,1 E. Fascione,18,12 E. Figueroa-Feliciano,17 C. W. Fink,20 K. Fouts,4 M. Fritts,8 G. Gerbier,18 R. Germond,18,12 M. Ghaith,18 S. R. Golwala,3 H. R. Harris,21,6 B. A. Hines,22 M. I. Hollister,10 Z. Hong,17 E. W. Hoppe,5 L. Hsu,10 M. E. Huber,22,23 V. Iyer,7 D. Jardin,15 A. Jastram,6 V. K. S. Kashyap,7 M. H. Kelsey,6 A. Kubik,6 N. A. Kurinsky,10 R. E. Lawrence,6 A. Li,11,12 B. Loer,5 E. Lopez Asamar,2 P. Lukens,10 D. B. MacFarlane,4 R. Mahapatra,6 V. Mandic,8 N. Mast,8 A. J. Mayer,12 H. Meyer zu Theenhausen,24 É. M. Michaud,19 E. Michielin,11,12 N. Mirabolfathi,6 B. Mohanty,7 J. D. Morales Mendoza,6 S. Nagorny,18 J. Nelson,8 H. Neog,6 V. Novati,17 J. L. Orrell,5 S. M. Oser,11,12 W. A. Page,20 R. Partridge,4 R. Podviianiuk,25 F. Ponce,14 S. Poudel,25,† A. Pradeep,11,12 M. Pyle,20 W. Rau,12 E. Reid,2 R. Ren,17 T. Reynolds,9 A. Roberts,22 A. E. Robinson,19 T. Saab,9 B. Sadoulet,20,26 J. Sander,25 A. Sattari,1 R. W. Schnee,13 S. Scorza,27,28 B. Serfass,20 D. J. Sincavage,8 C. Stanford,14 J. Street,13 D. Toback,6 R. Underwood,18,12 S. Verma,6 A. N. Villano,22 B. von Krosigk,24 S. L. Watkins,20 J. S. Wilson,6 M. J. Wilson,1,24 J. Winchell,6 D. H. Wright,4 S. Yellin,14 B. A. Young,29 T. C. Yu,4 E. Zhang,1 H. G. Zhang,8 24Institut für Experimentalphysik, Universität Hamburg, 22761 Hamburg, Germany 25Department of Physics, University of South Dakota, Vermillion, South Dakota 57069, USA
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.