Abstract

ABSTRACT Large-scale coherent magnetic fields in the intergalactic medium (IGM) are presumed to play a key role in the formation and evolution of the cosmic web, and in large-scale feedback mechanisms. However, they are theorized to be extremely weak, in the nano-Gauss regime. To search for a statistical signature of these weak magnetic fields, we perform a cross-correlation between the Faraday rotation measures (RMs) of 1742 radio galaxies at z > 0.5 and large-scale structure at 0.1 < z < 0.5, as traced by 18 million optical and infrared foreground galaxies. No significant correlation signal was detected within the uncertainty limits. We are able to determine model-dependent 3σ upper limits on the parallel component of the mean magnetic field strength of filaments in the IGM of ∼30 nG for coherence scales between 1 and 2.5 Mpc, corresponding to a mean upper bound RM enhancement of ∼3.8 rad m−2 due to filaments along all probed sightlines. These upper bounds are consistent with upper bounds found previously using other techniques. Our method can be used to further constrain intergalactic magnetic fields with upcoming future radio polarization surveys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.