Abstract

Numerical simulations of galaxy formation within the cold dark matter (CDM) hierarchical clustering framework are unable to produce large disk galaxies without invoking some form of feedback to suppress gas cooling and collapse until a redshift of unity or below. An important observational consequence of delaying the epoch of disk formation until relatively recent times is that the stellar populations in the extended disk should be of predominantly young-to-intermediate age. We use a deep Hubble Space Telescope/Wide Field Planetary Camera 2 archival pointing to investigate the mean age and metallicity of the stellar population in a disk-dominated field at 30 kpc along the major axis of M31. Our analysis of the color-magnitude diagram reveals the dominant population to have a significant mean age (≳8 Gyr) and a moderately high mean metallicity ([Fe/H] ~ -0.7); tentative evidence is also presented for a trace population of ancient (≥10 Gyr) metal-poor stars. These characteristics are unexpected in CDM models, and we discuss the possible implications of this result as well as alternative interpretations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.