Abstract

Stresses from mantle convection deflect Earth's surface vertically, producing dynamic topography that is important for continental dynamics and sea-level change but difficult to observe due to overprinting by isostatic topography. For long wavelengths (∼104 km), the amplitude of dynamic topography is particularly uncertain, with mantle flow models typically suggesting larger amplitudes (>1000 m) than direct observations. Here we develop a new constraint on the amplitude of long-wavelength dynamic topography by examining asymmetries in seafloor bathymetry across mid-ocean ridges. We compare bathymetric profiles across the Mid-Atlantic Ridge (MAR) and the East Pacific Rise (EPR) and we find that the South American flank of both ridges subsides faster than its opposing flank. This pattern is consistent with dynamic subsidence across South America, supported by downwelling in the lower mantle. To constrain the amplitude of dynamic topography, we compare bathymetric profiles across both ridges after correcting bathymetry for several different models of dynamic topography with varying amplitudes and spatial patterns. We find that long-wavelength dynamic topography with an amplitude of only ∼500 m explains the observed asymmetry of the MAR. A similar model can explain EPR asymmetry but is complicated by additional asymmetrical topography associated with tectonic, crustal thickness, and/or asthenospheric temperature asymmetries across the EPR. After removing 500 m of dynamic topography, both the MAR and EPR exhibit a slower seafloor subsidence rate (∼280–290 m/Myr1/2) than previously reported. Our finding of only ∼500 m of long-wavelength dynamic topography may indicate the importance of thermochemical convection and/or large viscosity variations for lower mantle dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call