Abstract
Dark Matter annihilations after recombination and during the epoch of structure formation deposit energy in the primordial intergalactic medium, producing reionization and heating. We investigate the constraints that are imposed by the observed optical depth of the Universe and the measured temperature of the intergalactic gas. We find that the bounds are significant, and have the power to rule out large portions of the `DM mass/cross section' parameter space. The optical depth bound is generally stronger and does not depend significantly on the history of structure formation. The temperature bound can be competitive in some cases for small masses or the hadronic annihilation channels (and is affected somewhat by the details of structure formation). We find in particular that DM particles with a large annihilation cross section into leptons and a few TeV mass, such as those needed to explain the PAMELA and FERMI+HESS cosmic ray excesses in terms of Dark Matter, are ruled out as they produce too many free electrons. We also find that low mass particles (≲ 10 GeV) tend to heat too much the gas and are therefore disfavored.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.