Abstract

Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structures, formations, and evolutions). Now several hundreds of strong lens systems produced by massive galaxies have been discovered, which may form well-defined samples useful for statistical analyses. To collect a relatively complete lens redshift data from various large systematic surveys of gravitationally lensed quasars and check the possibility to use it as a future complementarity to other cosmological probes. We use the distribution of gravitationally-lensed image separations observed in the Cosmic Lens All-Sky Survey (CLASS), the PMN-NVSS Extragalactic Lens Survey (PANELS), the Sloan Digital Sky Survey (SDSS) and other surveys, considering a singular isothermal ellipsoid (SIE) model for galactic potentials as well as improved new measurements of the velocity dispersion function of galaxies based on the SDSS DR5 data and recent semi-analytical modeling of galaxy formation, to constrain two dark energy models ($\Lambda$CDM and constant $w$) under a flat universe assumption. We find that the current lens redshift data give a relatively weak constraint on the model parameters. However, by combing the redshift data with the baryonic acoustic oscillation peak and the comic macrowave background data, we obtain more stringent results, which show that the flat $\Lambda$ CDM model is still included at 1$\sigma$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call