Abstract

We constrain coronal outflow velocity solutions, resolved along the line-of-sight, by using Doppler dimming models of H I Lyman alpha and O VI 1032/1037 A emissivities obtained with data from the Ultraviolet Coronagraph Spectrometer (UVCS) on SOHO. The local emissivities, from heliocentric heights of 1.5 to 3.0 solar radii, were determined from 3-D reconstructions of line-of-sight intensities obtained during the first Whole Sun Month Campaign (10 August to 8 September 1996). The models use electron densities derived from polarized brightness measurements made with the visible light coronagraphs on UVCS and LASCO, supplemented with data from Mark III at NCAR/MLSO. Electron temperature profiles are derived from 'freezing-in' temperatures obtained from an analysis of charge state data from SWICS/Ulysses. The work concentrates on neutral hydrogen outflow velocities which depend on modeling the absolute coronal H I Lyα emissivities. We use an iterative method to determine the neutral hydrogen outflow velocity with consistent values for the electron temperatures derived from a freezing-in model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.