Abstract

We present an approach to constrain simulated atmospheric black carbon (BC) using carbon monoxide (CO) observations. The approach uses: (1) the Community Atmosphere Model with Chemistry to simulate the evolution of BC and CO within an ensemble of model simulations; (2) satellite CO retrievals from the MOPITT/Terra instrument to assimilate observed CO into these simulations; (3) the derived sensitivity of BC to CO within these simulations to correct the simulated BC distributions. We demonstrate the performance of this approach through model experiments with and without the BC corrections during the period coinciding with the Intercontinental Chemical Transport Experiment (INTEX‐B). Our results show significant improvements (∼50%) in median BC profiles using constraints from MOPITT, based on comparisons with INTEX‐B measurements. We find that assimilating MOPITT CO provides considerable impact on simulated BC concentrations, especially over source regions. This approach offers an opportunity to augment our current ability to predict BC distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.