Abstract

We derive constraints on the time variability of coronal heating from observations of the so-called active region moss by the Transition Region and Coronal Explorer (TRACE). The moss is believed to be due to million-degree emission from the transition regions at the footpoints of coronal loops whose maximum temperatures are several million degrees. The two key results from the TRACE observations discussed in this paper are that in the moss regions one generally sees only moss, not million-degree loops, and that the moss emission exhibits only weak intensity variations, � 10% over periods of hours. TRACE movies showing these results are presented. We demonstrate, using both analytic and numerical calculations, that the lack of observable million-degree loops in the moss regions places severe constraints on the possible time variability of coronal heating in the loops overlying the moss. In particular, the heating in the hot moss loops cannot be truly flarelike with a sharp cutoff, but instead must be quasi-steady to an excellent approximation. Furthermore, the lack of significant variations in the moss intensity implies that the heating magnitude is only weakly varying. The implications of these conclusions for coronal heating models will be discussed. Subject headings: Sun: corona — Sun: transition region — Sun: UV radiation On-line material: mpg animation

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.