Abstract
Abstract Arc magmas are produced from the mantle wedge, with possible addition of fluids and melts derived from serpentinites and sediments in the subducting slab. Identification of various sources and their relevant contributions to such magmas is challenging; in particular, at continental arcs where crustal assimilation may overprint initial geochemical signatures. This study presents oxygen isotopic compositions of zoned olivine grains from post-caldera basalts and boron contents and isotopes of these basalts and glassy melt inclusions hosted in quartz and clinopyroxene of silicic tuffs in the Toba volcanic system, Indonesia. High-magnesian (≥87 mol% Fo [forsterite]) cores of olivine in the basalts have δ18O values ranging from 5.12‰ to 6.14‰, indicating that the mantle source underneath Toba is variably enriched in 18O. Olivine with <87 mol% Fo has highly variable (4.8–7.2‰), but overall increased, δ18O values, interpreted to reflect assimilation of high δ18O crustal materials during fractional crystallization. Mass balance calculations constrain the overall volume of crustal assimilation for the basalts as ≤13%. The processes responsible for the 18O-enriched basaltic melts are further constrained by boron data that indicate the addition of <0.1 wt% fluids to the mantle, >40% of the fluids being derived from serpentinites and others from altered oceanic crust and sediments. This amount of fluids can increase δ18O of the magma by only ~0.02‰. Approximately 6–9% sediment-derived melt hybridization in the mantle wedge is further needed to yield basaltic melts with δ18O values in equilibrium with those of the high-Fo olivine cores. The cogenetic silicic tuffs, on the other hand, seem to record a higher proportion of fluid addition dominated by sediment-derived fluids to the mantle source, in addition to crustal assimilation. Our reconnaissance study therefore demonstrates the application of combined B and O isotopes to differentiate between melts and fluids derived from serpentinites and sediments in the subducted slab—an application that can be applied to arc magmas worldwide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.