Abstract

We use a Monte Carlo code to generate synthetic near-IR reflection nebulae that resemble those (normally associated with a bipolar outflow cavity) seen towards massive young stellar objects (YSOs). The 2D axi-symmetric calculations use an analytic expression for a flattened infalling rotating envelope with a bipolar cavity representing an outflow. We are interested in which aspects of the circumstellar density distribution can be constrained by observations of these reflection nebulae. We therefore keep the line of sight optical depth constant in the model grid, as this is often constrained independently by observations. It is found that envelopes with density distributions corresponding to mass infall rates of ~10-4 (for an envelope radius of 4700 AU) seen at an inclination angle of ∼ approximately reproduce the morphology and extension of the sub-arcsecond nebulae observed in massive YSOs. Based on the flux ratio between the approaching and receding lobe of the nebula, we can constrain the system inclination angle. The cavity opening angle is well constrained from the nebula opening angle. Our simulations indicate that to constrain the outflow cavity shape and the degree of flattening in the envelope, near-IR imaging with higher resolution and dynamic range than speckle imaging in 4 m-class telescopes is needed. The radiative transfer code is also used to simulate the near-IR sub-arcsecond nebula seen in Mon R2 IRS3. We find indications of a shallower opacity law in this massive YSO than in the interstellar medium, or possibly a sharp drop in the envelope density distribution at distances of ~1000 AU from the illuminating source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call