Abstract
Efficiently utilising near-infrared solar radiation remains a challenge in advanced solar energy conversion concepts for photocatalysis and photovoltaics. Here we argue that the particulate nature of the solar photon flux limits the efficiency of schemes that rely on the interaction between optically excited states to exploit low energy photons, such as upconversion and hot carrier systems. The solar photon flux poses stringent constraints on the optical absorption strengths and excited state lifetimes required of such schemes to be efficient. We survey reported device architectures and material properties, and present a quantitative assessment of the extent to which they are limited by the sparse solar photon flux. We illustrate why two photon absorption and other non-linear optical methods are completely unsuitable for augmenting solar energy conversion efficiency, and where existing upconversion and hot carrier solar cell schemes stand against the photon flux criterion. Finally, we describe the opportunities that strategies such as sensitisation and phononic (vibrational) engineering present for bridging the gap between current devices and their efficiency limits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.