Abstract

Constraint-based methods (CBMs) are promising tools for the analysis of metabolic networks, as they do not require detailed knowledge of the biochemical reactions. Some of these methods only need information about the stoichiometric coefficients of the reactions and their reversibility types, i.e., constraints for steady-state conditions. Nevertheless, CBMs have their own limitations. For example, these methods may be sensitive to missing information in the models. Additionally, they may be slow for the analysis of genome-scale metabolic models. As a result, some studies prefer to consider substructures of networks, instead of complete models. Some other studies have focused on better implementations of the CBMs. In Chapter 2, the sensitivity of flux coupling analysis (FCA) to missing reactions is studied. Genome-scale metabolic reconstructions are comprehensive, yet incomplete, models of real-world metabolic networks. While FCA has proved an appropriate method for analyzing metabolic relationships and for detecting functionally related reactions in such models, little is known about the impact of missing reactions on the accuracy of FCA. Note that having missing reactions is equivalent to deleting reactions, or to deleting columns from the stoichiometric matrix. Based on an alternative characterization of flux coupling relations using elementary flux modes, we study the changes that flux coupling relations may undergo due to missing reactions. In particular, we show that two uncoupled reactions in a metabolic network may be detected as directionally, partially or fully coupled in an incomplete version of the same network. Even a single missing reaction can cause significant changes in flux coupling relations. In case of two consecutive E. coli genome-scale networks, many fully-coupled reaction pairs in the incomplete network become directionally coupled or even uncoupled in the more complete reconstruction. In this context, we found gene expression correlation values being significantly higher for the pairs that remained fully coupled than for the uncoupled or directionally coupled pairs. Our study clearly suggests that FCA results are indeed sensitive to missing reactions. Since the currently available genome-scale metabolic models are incomplete, we advise to use FCA results with care. In Chapter 3, a different, but related problem is considered. Due to the large size of genome-scale metabolic networks, some studies suggest to analyze subsystems, instead of original genome-scale models. Note that analysis of a subsystem is equivalent to deletion of some rows from the stoichiometric matrix, or identically, assuming some internal metabolites to be external. We show mathematically that analysis of a subsystem instead of the original model can lead the flux coupling relations to undergo certain changes. In particular, a pair of (fully, partially or directionally) coupled reactions may be detected as uncoupled in the chosen subsystem. Interestingly, this behavior is the opposite of the flux coupling changes that may happen due to the existence of missing reactions, or equivalently, deletion of reactions. We also show that analysis of organelle subsystems

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call