Abstract

Many important combinatorial problems can be modelled as constraint satisfaction problems, hence identifying polynomial-time solvable classes of constraint satisfaction problems received a lot of attention. In this paper, we are interested in structural properties that can make the problem tractable. So far, the largest structural class that is known to be polynomial-time solvable is the class of bounded hypertree width instances introduced by Gottlob et al. [20]. Here we identify a new class of polynomial-time solvable instances: those having bounded fractional edge cover number.Combining hypertree width and fractional edge cover number, we then introduce the notion of fractional hypertree width. We prove that constraint satisfaction problems with bounded fractional hypertree width can be solved in polynomial time (provided that a the tree decomposition is given in the input). We also prove that certain parameterized constraint satisfaction, homomorphism, and embedding problems are fixed-parameter tractable on instances having bounded fractional hypertree width.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.