Abstract

Many natural combinatorial problems can be expressed as constraint satisfaction problems. This class of problems is known to be NP-complete in general, but certain restrictions on the form of the constraints can ensure tractability. In this paper we show that any restricted set of constraint types can be associated with a finite universal algebra. We explore how the computational complexity of a restricted constraint satisfaction problem is connected to properties of the corresponding algebra. Using these results we exhibit a common structural property of all known intractable constraint satisfaction problems. Finally, we classify all finite strictly simple surjective algebras with respect to tractability. The result is a dichotomy theorem which significantly generalises Schaefer’s dichotomy for the Generalised Satisfiability problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.