Abstract

The incorporation of a metal-carbon triple bond into a ring system is challenging because of the linear nature of triple bonds. To date, the synthesis of these complexes has been limited to those containing third-row transition metal centers, namely, osmium and rhenium. We report the synthesis and full characterization of the first cyclic metal carbyne complex with a second-row transition metal center, ruthenapentalyne. It shows a bond angle of 130.2(3)° around the sp-hybridized carbyne carbon, which represents the recorded smallest angle of second-row transition metal carbyne complexes, as it deviates nearly 50° from the original angle (180°). Density functional theory calculations suggest that the inherent aromatic nature of these metallacycles with bent Ru≡C-C moieties enhances their stability. Reactivity studies showed striking observations, such as ambiphilic reactivity, a metal-carbon triple bond shift, and a [2 + 2] cycloaddition reaction with alkyne and cascade cyclization reactions with ambident nucleophiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.