Abstract
Abstract In this paper, an effective ∊-constraint heat transfer search (∊-HTS) algorithm for the multi-objective engineering design problems is presented. This algorithm is developed to solve multi-objective optimization problems by evaluating a set of single objective sub-problems. The effectiveness of the proposed algorithm is checked by implementing it on multi-objective benchmark problems that have various characteristics of Pareto front such as discrete, convex, and non-convex. This algorithm is also tested for several distinctive multi-objective engineering design problems, such as four bar truss problem, gear train problem, multi-plate disc brake design, speed reducer problem, welded beam design, and spring design problem. Moreover, the numerical experimentation shows that the proposed algorithm generates the solution to represent true Pareto front. Highlights A novel multi-objective optimization (MOO) algorithm is proposed. Proposed algorithm is presented to obtain the Pareto-optimal solutions. The multi-objective optimization algorithm compared with other work in the literature. Test performance of proposed algorithm on MOO benchmark/design engineering problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.