Abstract
In this paper, we develop the constraint energy minimization generalized multiscale finite element method (CEM-GMsFEM) in mixed formulation applied to parabolic equations with heterogeneous diffusion coefficients. The construction of the method is based on two multiscale spaces: pressure multiscale space and velocity multiscale space. The pressure space is constructed via a set of well-designed local spectral problems, which can be solved independently. Based on the computed pressure multiscale space, we will construct the velocity multiscale space by applying constrained energy minimization. The convergence of the proposed method is proved. In particular, we prove that the convergence of the method depends only on the coarse grid size, and is independent of the heterogeneities and contrast of the diffusion coefficient. Four typical types of permeability fields are exploited in the numerical simulations, and the results indicate that our proposed method works well and gives efficient and accurate numerical solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.