Abstract
In this paper, we consider a general challenging distributed optimization setup arising in several important network control applications. Agents of a network want to minimize the sum of local cost functions, each one depending on a local variable, subject to local and coupling constraints, with the latter involving all the decision variables. We propose a novel fully distributed algorithm based on a relaxation of the primal problem and an elegant exploration of duality theory. Despite its complex derivation, based on several duality steps, the distributed algorithm has a very simple and intuitive structure. That is, each node finds a primal-dual optimal solution pair of a local relaxed version of the original problem and then updates suitable auxiliary local variables. We prove that agents asymptotically compute their portion of an optimal (feasible) solution of the original problem. This primal recovery property is obtained without any averaging mechanism typically used in dual decomposition methods. To corroborate the theoretical results, we show how the methodology applies to an instance of a distributed model-predictive control scheme in a microgrid control scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.