Abstract

A refined Desulfovibrio vulgaris Hildenborough flux balance analysis (FBA) model (iJF744) was developed, incorporating 1016 reactions that include 744 genes and 951 metabolites. A draft model was first developed through automatic model reconstruction using the ModelSeed Server and then curated based on existing literature. The curated model was further refined by incorporating three recently proposed redox reactions involving the Hdr-Flx and Qmo complexes and a lactate dehydrogenase (LdhAB, DVU 3027-3028) indicated by mutation and transcript analyses to serve electron transfer reactions central to syntrophic and respiratory growth. Eight different variations of this model were evaluated by comparing model predictions to experimental data determined for four different growth conditions - three for sulfate respiration (with lactate, pyruvate or H2 /CO2 -acetate) and one for fermentation in syntrophic coculture. The final general model supports (i) a role for Hdr-Flx in the oxidation of DsrC and ferredoxin, and reduction of NAD+ in a flavin-based electron confurcating reaction sequence, (ii) a function of the Qmo complex in receiving electrons from the menaquinone pool and potentially from ferredoxin to reduce APS and (iii) a reduction of the soluble DsrC by LdhAB and a function of DsrC in electron transfer reactions other than sulfite reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.