Abstract

In the early stages of mechanical product design, designers not only need to determine the physical structure of the design, but also need to verify that the design functions properly with the allowable values or ranges of values of the relevant design attributes. Existing work on design verification is either aimed at specific design problems, which are generally carried out at the downstream design stages, or aimed at deriving design behavior using a behavioral simulation approach. Functional design verification has largely been neglected by the research society. To tackle this problem, we propose a generic constraint-based approach that is based on a comprehensive functional design model. A number of strategies are proposed for the approach, including strategies for design variables reduction, variable dependency graph development, constraint propagation, and dynamic verification of a design over an assigned set of attributes (variables). The approach is implemented as part of a functional modeling design environment. A simple design verification case is presented to illustrate our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.