Abstract

We provide a strange star model under the framework of general relativity by using a general linear equation of state (EOS). The solution set thus obtained is employed on altogether 20 compact star candidates to constraint values of MIT bag model. No specific value of the bag constant ([Formula: see text]) a priori is assumed, rather possible range of values for bag constant is determined from observational data of the said set of compact stars. To do so, the Tolman–Oppenheimer–Volkoff (TOV) equation is solved by homotopy perturbation method (HPM) and hence we get a mass function for the stellar system. The solution to the Einstein field equations represents a nonsingular, causal and stable stellar structure which can be related to strange stars. Eventually, we get an interesting result on the range of the bag constant as [Formula: see text]. We have found the maximum surface redshift [Formula: see text] and shown that the central redshift ([Formula: see text]) cannot have value larger than [Formula: see text], where [Formula: see text]. Also, we provide a possible value of bag constant for neutron star with quark core using hadronic as well as quark EOS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.