Abstract

The complex dynamics of the Venus atmosphere produces a periodic mass redistribution pattern that creates a time-variable modulation of the gravity field of Venus. This gravity signal depends on the net transport of mass across the globe and on the response of the solid body to the normal loading of its crust imparted by the atmosphere. In this work, we explore the possibility of measuring this phenomenon with VERITAS, a NASA Discovery-class mission. By simulating the gravity science experiment, we explore the possibility of measuring the response of Venus to the atmospheric loading, parametrized by the loading Love numbers (), and assess the dependence of these parameters on fundamental interior structure properties. Using the most recent models of Venus’ interior, we compute the Venus Love numbers in a compressible viscoelastic setting and compare them with the predicted uncertainty of the VERITAS measurements. We show that VERITAS will measure at the 4% level and that this measurement could possibly help to distinguish between different equally plausible interior structure models, especially allowing us to distinguish different rheological laws. We also show that a measurement campaign such as the VERITAS gravity science investigation has the potential of measuring not only at the loading forcing frequency, but also at the tidal frequency, ultimately providing a way to probe the response of the planet at different forcing periods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.