Abstract

Based on the current measurement of the neutron distribution radius ( ) of 208Pb from the PREX-2 data, we revisited the recently developed G3 and IOPB-I force parameters by fine-tuning some specific couplings within the relativistic mean-field (RMF) model. The ω– ρ-mesons coupling and the ρ-meson coupling are constrained to the experimental neutron radius of 208Pb without compromising the bulk properties of finite nuclei and infinite nuclear matter observables. The modified parameter sets are applied to calculate the gross properties of finite nuclei such as binding energies, charge distributions, nuclear radii, pairing gaps, and single-particle energies. The root-mean-square deviations in binding energy and charge radius are estimated with respect to the available experimental data for 195 even–even nuclei, and the results compare favourably with the well-calibrated effective interactions of Skyrme, Gogny and other relativistic mean-field parametrizations. The pairing gap estimations for modified G3 and IOPB-I for Sn isotopes are also compared with the Hartree–Fock–Bogoliubov calculation with the Gogny (D1S) interaction. The isotopic shift and single-particle energy spacing are also calculated and compared with the experimental data for both original and modified versions of the G3 and IOPB-I parameter sets. Subsequently, both the modified parameter sets are used to obtain the various infinite nuclear matter observables at saturation. In addition to these, the force parameters are adopted to calculate the properties of a high isospin asymmetry dense system such as neutron star matter and tested for validation using the constraint from GW170817 binary neutron star merger events. The tuned forces predict relatively good results for finite and infinite nuclear matter systems and the current limitation on the neutron radius from PREX-2. A systematic analysis using these two refitted parameter sets over the nuclear chart will be communicated shortly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.