Abstract
Analytical expressions for the orbital precessions affecting the relative motion of the components of a local binary system induced by Lorentz-violating Preferred Frame Effects (PFE) are explicitly computed in terms of the Parametrized Post-Newtonian (PPN) parameters α1, α2. Preliminary constraints on α1, α2 are inferred from the latest determinations of the observationally admitted ranges [Formula: see text] for any anomalous Solar System planetary perihelion precessions. Other bounds existing in the literature are critically reviewed, with particular emphasis on the constraint [Formula: see text] based on an interpretation of the current close alignment of the Sun's equator with the invariable plane of the Solar System in terms of the action of a α2-induced torque throughout the entire Solar System's existence. Taken individually, the supplementary precessions [Formula: see text] of Earth and Mercury, recently determined with the INPOP10a ephemerides without modeling PFE, yield α1 = (0.8±4) × 10-6 and α2 = (4±6) × 10-6, respectively. A linear combination of the supplementary perihelion precessions of all the inner planets of the Solar System, able to remove the a priori bias of unmodeled/mismodeled standard effects such as the general relativistic Lense–Thirring precessions and the classical rates due to the Sun's oblateness J2, allows to infer α1 = (-1 ± 6) × 10-6, α2 = (-0.9 ± 3.5) × 10-5. Such figures are obtained by assuming that the ranges of values for the anomalous perihelion precessions are entirely due to the unmodeled effects of α1 and α2. Our bounds should be improved in the near-mid future with the MESSENGER and, especially, BepiColombo spacecrafts. Nonetheless, it is worthwhile noticing that our constraints are close to those predicted for BepiColombo in two independent studies. In further dedicated planetary analyses, PFE may be explicitly modeled to estimate α1, α2 simultaneously with the other PPN parameters as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.