Abstract

We calculate the cross-correlation function $\langle (\Delta T/T)(\mathbf{v}\cdot \mathbf{n}/\sigma_{v}) \rangle$ between the kinetic Sunyaev-Zeldovich (kSZ) effect and the reconstructed peculiar velocity field using linear perturbation theory, to constrain the optical depth $\tau$ and peculiar velocity bias of central galaxies with Planck data. We vary the optical depth $\tau$ and the velocity bias function $b_{v}(k)=1+b(k/k_{0})^{n}$, and fit the model to the data, with and without varying the calibration parameter $y_{0}$ that controls the vertical shift of the correlation function. By constructing a likelihood function and constraining $\tau$, $b$ and $n$ parameters, we find that the quadratic power-law model of velocity bias $b_{v}(k)=1+b(k/k_{0})^{2}$ provides the best-fit to the data. The best-fit values are $\tau=(1.18 \pm 0.24) \times 10^{-4}$, $b=-0.84^{+0.16}_{-0.20}$ and $y_{0}=(12.39^{+3.65}_{-3.66})\times 10^{-9}$ ($68\%$ confidence level). The probability of $b>0$ is only $3.12 \times 10^{-8}$ for the parameter $b$, which clearly suggests a detection of scale-dependent velocity bias. The fitting results indicate that the large-scale ($k \leq 0.1\,h\,{\rm Mpc}^{-1}$) velocity bias is unity, while on small scales the bias tends to become negative. The value of $\tau$ is consistent with the stellar mass--halo mass and optical depth relation proposed in the previous literatures, and the negative velocity bias on small scales is consistent with the peak background-split theory. Our method provides a direct tool to study the gaseous and kinematic properties of galaxies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.