Abstract

We study the finite supersymmetric loop corrections to fermion masses and mixing matrices in the generic MSSM. In this context the effects of non-decoupling chirally-enhanced self-energies are studied beyond leading order in perturbation theory. These NLO corrections are not only necessary for the renormalization of the CKM matrix to be unitary, they are also numerically important for the light fermion masses. Focusing on the tri-linear A-terms with generic flavor-structure we derive very strong bounds on the chirality-changing mass insertions delta^{f\,LR,RL}_{IJ} by applying 't Hooft's naturalness criterion. In particular, the NLO corrections to the up quark mass allow us to constrain the unbounded element delta^{u\,RL}_{13} if at the same time $\delta^{u\,LR}_{13}$ is unequal to zero. Our result is important for single-top production at the LHC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.