Abstract

Primordial black holes (PBHs) can be not only cold dark matter candidates but also progenitors of binary black holes observed by LIGO-Virgo-KAGRA (LVK) Collaboration. The PBH mass can be shifted to the heavy distribution if multi-merger processes occur. In this work, we constrain the merger history of PBH binaries using the gravitational wave events from the third Gravitational-Wave Transient Catalog (GWTC-3). Considering four commonly used PBH mass functions, namely the log-normal, power-law, broken power-law, and critical collapse forms, we find that the multi-merger processes make a subdominant contribution to the total merger rate. Therefore, the effect of merger history can be safely ignored when estimating the merger rate of PBH binaries. We also find that GWTC-3 is best fitted by the log-normal form among the four PBH mass functions and confirm that the stellar-mass PBHs cannot dominate cold dark matter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call