Abstract

We constrain the slope of the star formation rate ($\log\Psi$) to stellar mass ($\log\mathrm{M_{\star}}$) relation down to $\log(\mathrm{M_{\star}/M_{\odot}})=8.4$ ($\log(\mathrm{M_{\star}/M_{\odot}})=9.2$) at $z=0.5$ ($z=2.5$) with a mass-complete sample of 39,106 star-forming galaxies selected from the 3D-HST photometric catalogs, using deep photometry in the CANDELS fields. For the first time, we find that the slope is dependent on stellar mass, such that it is steeper at low masses ($\log\mathrm{\Psi}\propto\log\mathrm{M_{\star}}$) than at high masses ($\log\mathrm{\Psi}\propto(0.3-0.6)\log\mathrm{M_{\star}}$). These steeper low mass slopes are found for three different star formation indicators: the combination of the ultraviolet (UV) and infrared (IR), calibrated from a stacking analysis of Spitzer/MIPS 24$\mu$m imaging; $\beta$-corrected UV SFRs; and H$\alpha$ SFRs. The normalization of the sequence evolves differently in distinct mass regimes as well: for galaxies less massive than $\log(\mathrm{M_{\star}/M_{\odot}})<10$ the specific SFR ($\Psi/\mathrm{M_{\star}}$) is observed to be roughly self-similar with $\Psi/\mathrm{M_{\star}}\propto(1+z)^{1.9}$, whereas more massive galaxies show a stronger evolution with $\Psi/\mathrm{M_{\star}}\propto(1+z)^{2.2-3.5}$ for $\log(\mathrm{M_{\star}/M_{\odot}})=10.2-11.2$. The fact that we find a steep slope of the star formation sequence for the lower mass galaxies will help reconcile theoretical galaxy formation models with the observations. The results of this study support the analytical conclusions of Leja et al. (2014).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.