Abstract

Within the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD) model, the transverse-velocity dependence of the elliptic flow of free nucleons from $^{197}$Au+$^{197}$Au collisions at the incident energy 400 MeV$/$nucleon is studied within different windows of the normalized c.m. rapidity $y_0$. It is found that the elliptic flow difference $v_{2}^{n}$-$v_{2}^{p}$ and ratio $v_{2}^{n}$/$v_{2}^{p}$ of neutrons versus protons are sensitive to the density dependence of the symmetry energy, especially the ratio $v_{2}^{n}$/$v_{2}^{p}$ at small transverse velocity in the intermediate rapidity intervals $0.4<|y_0|<0.6$. By comparing either transverse-momentum dependent or integrated FOPI/LAND elliptic flow data of nucleons and hydrogen isotopes with calculations using various Skyrme interactions, all exhibiting similar values of isoscalar incompressibility but very different density dependences of the symmetry energy, a moderately soft to linear symmetry energy is extracted, in good agreement with previous UrQMD or T\"{u}bingen QMD model calculations but contrasting results obtained with $\pi^-/\pi^+$ yield ratios available in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call