Abstract

ABSTRACT We have mapped the NGC 2023 reflection nebula in the 63 and 145 $\mu$m transitions of [O i] and the 158 $\mu$m [C ii] spectral lines using the heterodyne receiver upGREAT on SOFIA. The observations were used to identify the diffuse and dense components of the photon-dominated region (PDR) traced by the [C ii] and [O i] emission, respectively. The velocity-resolved observations reveal the presence of a significant column of low-excitation atomic oxygen, seen in absorption in the [O i] 63 $\mu$m spectra, amounting to about 20–60 per cent of the oxygen column seen in emission in the [O i] 145 $\mu$m spectra. Some self-absorption is also seen in [C ii], but for the most part it is hardly noticeable. The [C ii] and [O i] 63 $\mu$m spectra show strong red- and blue-shifted wings due to photoevaporation flows especially in the south-eastern and southern part of the reflection nebula, where comparison with the mid- and high-J CO emission indicates that the C+ region is expanding into a dense molecular cloud. Using a two-slab toy model the large-scale self-absorption seen in [O i] 63 $\mu$m is readily explained as originating in foreground low-excitation gas associated with the source. Similar columns have also been observed recently in other Galactic PDRs. These results have two implications: for the velocity-unresolved extragalactic observations this could impact the use of [O i] 63 $\mu$m as a tracer of massive star formation and secondly, the widespread self-absorption in [O i] 63 $\mu$m leads to underestimate of the column density of atomic oxygen derived from this tracer and necessitates the use of alternative indirect methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call