Abstract

Abstract Recently, ultraluminous X-ray source (ULX) M82 X-2 has been identified to be an accreting neutron star, which has a P = 1.37 s spin period, and is spinning up at a rate $\dot{P}=-2.0\times 10^{-10}\,\rm s\,s^{-1}$. Interestingly, its isotropic X-ray luminosity Liso = 1.8 × 1040 erg s− 1 during outbursts is 100 times the Eddington limit for a 1.4 M⊙ neutron star. In this Letter, based on the standard accretion model we attempt to constrain the dipolar magnetic field of the pulsar in ULX M82 X-2. Our calculations indicate that the accretion rate at the magnetospheric radius must be super-Eddington during outbursts. To support such a super-Eddington accretion, a relatively high multipole field ( ≳ 1013 G) near the surface of the accretor is invoked to produce an accreting gas column. However, our constraint shows that the surface dipolar magnetic field of the pulsar should be in the range of 1.0−3.5 × 1012 G. Therefore, our model supports that the neutron star in ULX M82 X-2 could be a low-magnetic-field magnetar (proposed by Tong) with a normal dipolar field (∼1012 G) and relatively strong multipole field. For the large luminosity variations of this source, our scenario can also present a self-consistency interpretation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.