Abstract
SUMMARYThe detailed structure near the 410-km discontinuity provides key constraints of the dynamic interactions between the upper mantle and the lower mantle through the mantle transition zone (MTZ) via mass and heat exchange. Meanwhile, the temperature of the subducting slab, which can be derived from its fast wave speed perturbation, is critical for understanding the mantle dynamics in subduction zones where the slab enters the MTZ. Multipathing, i.e. triplicated, body waves that bottom near the MTZ carry rich information of the 410-km discontinuity structure and can be used to constrain the discontinuity depth and radial variations of wave speeds across it. In this study, we systematically analysed the trade-off between model parameters in triplication studies using synthetic examples. Specifically, we illustrated the necessity of using array-normalized amplitude. Two 1-D depth profiles of the wave speed below the Tatar Strait of Russia in the Kuril subduction zone are obtained. We have observed triplications due to both the 410-km discontinuity and the slab upper surface. And, seismic structures for these two interfaces are simultaneously inverted. Our derived 410-km discontinuity depths for the northern and southern regions are at 420$\pm $15 and 425$\pm $15 km, respectively, with no observable uplift. The slab upper surface is inverted to be located about 50–70 km below the 410-km discontinuity. This location is between the depths of the 1 and 2 per cent P-wave speed perturbation contours of a regional 3-D full-waveform inversion (FWI) model, but we found twice the wave speed perturbation amplitude. A wave speed increase of 3.9–4.6 per cent within the slab, compared to 2.0–2.4 per cent from the 3-D FWI model, is necessary to fit the waveforms with the shortest period of 2 s, indicating that high-frequency waves are required to accurately resolve the detailed structures near the MTZ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.