Abstract

Models of neutrino mixing involving one or more sterile neutrinos have resurrected their importance in the light of recent cosmological data. In this case, reactor antineutrino experiments offer an ideal place to look for signatures of sterile neutrinos due to their impact on neutrino flavor transitions. In this work, we show that the high-precision data of the Daya Bay experi\-ment constrain the 3+1 neutrino scenario imposing upper bounds on the relevant active-sterile mixing angle $\sin^2 2 \theta_{14} \lesssim 0.06$ at 3$\sigma$ confidence level for the mass-squared difference $\Delta m^2_{41}$ in the range $(10^{-3},10^{-1}) \, {\rm eV^2}$. The latter bound can be improved by six years of running of the JUNO experiment, $\sin^22\theta_{14} \lesssim 0.016$, although in the smaller mass range $ \Delta m^2_{41} \in (10^{-4} ,10^{-3}) \, {\rm eV}^2$. We have also investigated the impact of sterile neutrinos on precision measurements of the standard neutrino oscillation parameters $\theta_{13}$ and $\Delta m^2_{31}$ (at Daya Bay and JUNO), $\theta_{12}$ and $\Delta m^2_{21}$ (at JUNO), and most importantly, the neutrino mass hierarchy (at JUNO). We find that, except for the obvious situation where $\Delta m^2_{41}\sim \Delta m^2_{31}$, sterile states do not affect these measurements substantially.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call