Abstract
We discuss a constraint on the scale $\Lambda_{\rm NC}$ of noncommutative (NC) gauge field theory arising from consideration of the big bang nucleosynthesis (BBN) of light elements. The propagation of neutrinos in the NC background described by an antisymmetric tensor $\theta^{\mu\nu}$ does result in a tree-level vector-like coupling to photons in a generation-independent manner, raising thus a possibility to have an appreciable contribution of three light right-handed (RH) fields to the energy density of the universe at nucleosynthesis time. Considering elastic scattering processes of the RH neutrinos off charged plasma constituents at a given cosmological epoch, we obtain for a conservative limit on an effective number of additional doublet neutrinos, $\Delta N_\nu =1$, a bound $\Lambda_{\rm NC} \stackrel{>}{\sim}$ 3 TeV. With a more stringent requirement, $\Delta N_\nu \lesssim 0.2$, the bound is considerably improved, $\Lambda_{\rm NC} \stackrel{>}{\sim} 10^3$ TeV. For our bounds the $\theta$-expansion of the NC action stays always meaningful, since the decoupling temperature of the RH species is perseveringly much less than the inferred bound for the scale of noncommutativity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.