Abstract

ABSTRACT A number of independent observations suggest that the intergalactic medium was significantly neutral at z = 7 and that reionization was, perhaps, still in progress at z = 5.7. The narrowband survey, SILVERRUSH, has mapped over 2000 Lyman-α emitters (LAEs) at these redshifts ( G58). Previous analyses have assumed that reionization was over by z = 5.7, but this data may actually sample the final stages of reionization when the last neutral islands were relegated to the cosmic voids. Motivated by these developments, we re-examine LAE void and peak statistics and their ability to constrain reionization. We construct models of the LAE distribution in (1 Gpc h−1)3 volumes, spanning a range of neutral fractions at z = 5.7 and 6.6. Models with a higher neutral fraction show an enhanced probability of finding holes in the LAE distribution. When comparing models at fixed mean surface density, however, LAEs obscured by neutral gas in the voids must be compensated by visible LAEs elsewhere. Hence, in these models, the likelihood of finding an overdense peak is also enhanced in the latter half of reionization. Compared to the widely used angular two-point correlation function (2PCF), we find that the void probability function (VPF) provides a more sensitive test of models during the latter half of reionization. By comparison, at neutral fractions $\sim 50{{\ \rm per\ cent}}$, the VPF and a simple peak thresholding statistic are both similar to the 2PCF in constraining power. Lastly, we find that the cosmic variance and large-scale asymmetries observed in the SILVERRUSH fields are consistent with large-scale structure in a ΛCDM universe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call