Abstract
ABSTRACT We forward-model mass-weighted stellar ages (MWAs) and quiescent fractions (fQ) in projected phase space (PPS), using data from the Sloan Digital Sky Survey, to jointly constrain an infall quenching model for galaxies in log (Mvir/M⊙) > 14 galaxy clusters at z ∼ 0. We find the average deviation in MWA from the MWA–M⋆ relation depends on position in PPS, with a maximum difference between the inner cluster and infalling interloper galaxies of ∼1 Gyr. Our model employs infall information from N-body simulations and stochastic star-formation histories from the universemachine model. We find total quenching times of tQ = 3.7 ± 0.4 Gyr and tQ = 4.0 ± 0.2 Gyr after first pericentre, for 9 < log (M⋆/M⊙) < 10 and 10 < log (M⋆/M⊙) < 10.5 galaxies, respectively. By using MWAs, we break the degeneracy in time of quenching onset and time-scale of star formation rate (SFR) decline. We find that time of quenching onset relative to pericentre is $t_{\mathrm{delay}}=3.5^{+0.6}_{-0.9}$ Gyr and $t_{\mathrm{delay}}=-0.3^{+0.8}_{-1.0}$ Gyr for 9 < log (M⋆/M⊙) < 10 and 10 < log (M⋆/M⊙) < 10.5 galaxies, respectively, and exponential SFR suppression time-scales are τenv ≤ 1.0 Gyr for 9 < log (M⋆/M⊙) < 10 galaxies and τenv ∼ 2.3 Gyr for 10 < log (M⋆/M⊙) < 10.5 galaxies. Stochastic star formation histories remove the need for rapid infall quenching to maintain the bimodality in the SFR of cluster galaxies; the depth of the green valley prefers quenching onsets close to first pericentre and a longer quenching envelope, in slight tension with the MWA-driven results. Taken together these results suggest that quenching begins close to, or just after pericentre, but the time-scale for quenching to be fully complete is much longer and therefore ram-pressure stripping is not complete on first pericentric passage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.