Abstract

ABSTRACT Next-generation galaxy surveys will be able to measure perturbations on scales beyond the equality scale. On these ultra-large scales, primordial non-Gaussianity leaves signatures that can shed light on the mechanism by which perturbations in the early Universe are generated. We perform a forecast analysis for constraining local type non-Gaussianity and its two-parameter extension with a simple scale-dependence. We combine different clustering measurements from future galaxy surveys – a 21cm intensity mapping survey and two photometric galaxy surveys – via the multitracer approach. Furthermore we then include cosmic microwave background (CMB) lensing from a CMB Stage 4 experiment in the multitracer, which can improve the constraints on bias parameters. We forecast σ(fNL) ≃ 0.9 (1.4) by combining SKA1, a Euclid-like (LSST-like) survey, and CMB Stage 4 lensing. With CMB lensing, the precision on fNL improves by up to a factor of 2, showing that a joint analysis is important. In the case with running of fNL, our results show that the combination of upcoming cosmological surveys could achieve σ(nNL) ≃ 0.12 (0.22) on the running index.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.